(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
minus(x, s(y)) →+ pred(minus(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
pred(s(x)) → x
minus(x, 0') → x
minus(x, s(y)) → pred(minus(x, y))
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
pred(s(x)) → x
minus(x, 0') → x
minus(x, s(y)) → pred(minus(x, y))
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
Types:
pred :: s:0' → s:0'
s :: s:0' → s:0'
minus :: s:0' → s:0' → s:0'
0' :: s:0'
quot :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
quotThey will be analysed ascendingly in the following order:
minus < quot
(8) Obligation:
TRS:
Rules:
pred(
s(
x)) →
xminus(
x,
0') →
xminus(
x,
s(
y)) →
pred(
minus(
x,
y))
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
Types:
pred :: s:0' → s:0'
s :: s:0' → s:0'
minus :: s:0' → s:0' → s:0'
0' :: s:0'
quot :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
minus, quot
They will be analysed ascendingly in the following order:
minus < quot
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol minus.
(10) Obligation:
TRS:
Rules:
pred(
s(
x)) →
xminus(
x,
0') →
xminus(
x,
s(
y)) →
pred(
minus(
x,
y))
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
Types:
pred :: s:0' → s:0'
s :: s:0' → s:0'
minus :: s:0' → s:0' → s:0'
0' :: s:0'
quot :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
quot
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
quot(
gen_s:0'2_0(
n1423_0),
gen_s:0'2_0(
1)) →
gen_s:0'2_0(
n1423_0), rt ∈ Ω(1 + n1423
0)
Induction Base:
quot(gen_s:0'2_0(0), gen_s:0'2_0(1)) →RΩ(1)
0'
Induction Step:
quot(gen_s:0'2_0(+(n1423_0, 1)), gen_s:0'2_0(1)) →RΩ(1)
s(quot(minus(gen_s:0'2_0(n1423_0), gen_s:0'2_0(0)), s(gen_s:0'2_0(0)))) →RΩ(1)
s(quot(gen_s:0'2_0(n1423_0), s(gen_s:0'2_0(0)))) →IH
s(gen_s:0'2_0(c1424_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
pred(
s(
x)) →
xminus(
x,
0') →
xminus(
x,
s(
y)) →
pred(
minus(
x,
y))
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
Types:
pred :: s:0' → s:0'
s :: s:0' → s:0'
minus :: s:0' → s:0' → s:0'
0' :: s:0'
quot :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
quot(gen_s:0'2_0(n1423_0), gen_s:0'2_0(1)) → gen_s:0'2_0(n1423_0), rt ∈ Ω(1 + n14230)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
quot(gen_s:0'2_0(n1423_0), gen_s:0'2_0(1)) → gen_s:0'2_0(n1423_0), rt ∈ Ω(1 + n14230)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
pred(
s(
x)) →
xminus(
x,
0') →
xminus(
x,
s(
y)) →
pred(
minus(
x,
y))
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
Types:
pred :: s:0' → s:0'
s :: s:0' → s:0'
minus :: s:0' → s:0' → s:0'
0' :: s:0'
quot :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
quot(gen_s:0'2_0(n1423_0), gen_s:0'2_0(1)) → gen_s:0'2_0(n1423_0), rt ∈ Ω(1 + n14230)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
quot(gen_s:0'2_0(n1423_0), gen_s:0'2_0(1)) → gen_s:0'2_0(n1423_0), rt ∈ Ω(1 + n14230)
(18) BOUNDS(n^1, INF)